6 research outputs found

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here

    Twenty Problems in Philosophy: A Brief Introduction to Contemporary Philosophy

    No full text

    Isolation of Laribacter hongkongensis, a novel bacterium associated with gastroenteritis, from drinking water reservoirs in Hong Kong

    No full text
    Aims: Freshwater fish has been found to be the reservoir of Laribacter hongkongensis, a recently discovered bacterium associated with community-acquired gastroenteritis. However, little is known about the ecology of this bacterium in the aquatic environment. We carried out a surveillance study to investigate the presence of L. hongkongensis in water and freshwater fish from 10 drinking water reservoirs in Hong Kong. Methods and Results: Using membrane filtration, L. hongkongensis was isolated from the waters of six reservoirs, with numbers ranging from 1 to 12 CFU l -1. Higher recovery rates were observed in summer and during days of higher water and ambient temperatures. Of 27 freshwater fish collected from the reservoirs, L. hongkongensis was recovered from the intestines of two fish, a Goldfish and a Nile tilapia. Overall, 35 different pulsed-field gel electrophoresis patterns are found among the 59 isolates recovered from water and the two isolates from freshwater fish. Conclusions: The present report represents the first to demonstrate the presence of L. hongkongensis in natural water environments. Significance and Impact of the Study: Although it is unlikely that treated, drinking water is an important source of L. hongkongensis-associated gastroenteritis, one should be aware of the possibility of other contaminated water as a source of human infection. © 2007 The Authors.link_to_subscribed_fulltex

    Metal Atoms as Reactive Intermediates

    No full text
    corecore